Напоминание

ПРОБНАЯ ВЕРСИЯ
"Магия чисел" (Математика, 11 класс)


Вопрос №1.
Вася из бумаги склеил многогранник, затем разрезал его по ребрам на отдельные грани, сложил в конверт и послал Саше. Верно ли, что Саша склеит такой же многогранник, какой был у Васи?

  Да
  Нет
  Саша может склеить как такой же, так и другой многогранник



Вопрос №2.
На координатной плоскости задан четырехугольник с вершинами в точках (0;6), (8;12), (11;8) и (3;2). Вычислите площадь фигур, на которые разбивает его прямая, заданная уравнением x+7y-67+0.

  12,7 и 37,5
  12,5 и 37,5
  12,5 и 37,7



Вопрос №3.
Существует ли в пространстве фигура, состоящая из многоугольников и содержащая точки A, B, C, D, для которой выполняются следующие соотношения: AB=CD=8см, AC=BD=10 см, AB+BC=13см?

  Да, существует. Ее можно получить из 2 равных треугольников ABC и BCD, приложенных друг к другу по стороне BC под некоторым углом.
  Да, существует. Ее можно получить из 2 равных треугольников ABC и BCD, приложенных друг к другу по стороне CD под некоторым углом.
  Нет, не существует.



Вопрос №4.
Решите уравнение |x-1|-|x-2|=1.

  x>2
  x≥2
  x=24