Напоминание

Мир квадратных корней


Автор: Федорова Оксана Юрьевна
Должность: учитель математики и информатики
Учебное заведение: МБОУ СОШ № 3
Населённый пункт: Новочебоксарск
Наименование материала: методическая разработка
Тема: Мир квадратных корней
Раздел: среднее образование





Назад




Ф.И.О. учителя: Федорова Оксана Юрьевна

Класс: 8

Предмет: Алгебра

Тема урока: Мир квадратных корней

Место и роль урока в изучаемой теме: обобщающий урок по теме «Квадратные корни»

Цели урока:

Образовательные:

повторить и закрепить определение и свойства арифметического квадратного корня, правила вынесения

множителя из-под знака корня и внесения множителя под знак корня;

закрепить умение выполнять действия с арифметическими квадратными корнями, используя теоретический

материал.

Развивающие: способствовать развитию познавательной активности, самостоятельности, сознательному восприятию

учебного материала, вычислительных навыков.

Воспитательные:

способствовать воспитанию взаимопомощи в процессе выполнения парной работы, аккуратности в оформлении

задач, интереса к математике;

способствовать формированию адекватной самооценки при выборе отметки на уроке, деловитости,

внимательности, трудолюбию, способности к самовыражению.

Планируемые результаты:

предметные:

учащиеся научатся:

доказывать свойства арифметических квадратных корней;

применять их к преобразованию выражений.

вычислять значения выражений, содержащих квадратные корни;

выражать переменные из геометрических и физических формул;

исследовать уравнение х

2

=а;

находить точные и приближенные корни при a > 0.

метапредметные:

уметь рассуждать и делать выводы при составлении формулировок новых правил;

грамотно излагать свои мысли;

работать с учебником;

показать хорошие результаты вычислительных навыков;

развить память.

личностные: уметь работать в коллективе, слушать собеседника и вести диалог, аргументировать свою точку зрения.

Метод обучения: словесно-наглядный

Техническое обеспечение: экран, проектор, компьютер.

Дидактическое обеспечение: презентация, таблица со свойствами арифметического квадратного корня, карточки

с заданиями, карточки с решениями и ответами, таблица квадратов натуральных чисел, рабочая карта обучающегося.

Технологическая карта урока

Этап

урока

Содержание этапа

Деятельность

учителя

Деятельность

учащихся

Формируемые

УУД

Виды

работы,

формы,

методы,

приемы

Планируемые

результаты

(включая УУД)

Время

1

Организац

ионный

момент.

Для организации

учащихся на

совместную учебную

деятельность я создаю

условия внешней и

внутренней

психологической

готовности к уроку

через приветствие и

дружелюбный призыв

к началу урока с

целью создания

позитивной

мотивации работы на

уроке.

(Настроить учеников

на учебную

деятельность и

получение новых

знаний).

Здравствуйте,

ребята.

Урок – главное

слово в школьной

жизни, оно

объединяет нас с

вами. Давайте

расшифруем каждую

букву этого слова.

С чем ассоциируется

первая буква. Для

меня эта буква

ассоциируется с

вашими успехами, а

для вас.

У – успех ;

Что скрывается под

буквой «Р». Какие

чувства испытываете

когда добиваетесь

успеха.

Р – радость ;

Каждый из вас

талантлив по своему.

Подберите синоним

к слову

талантливый, на

букву О

О – одаренность ;

Вы всегда можете

рассчитывать на

Приветствие

учителя.

Расшифровыва

ли каждую

букву слова

«урок».

регулятивные

УУД

учащиеся

научатся:

-формулировать

и

удерживать

учебную задачу;

-выбирать

дей-

ствия в соответ-

ствии с постав-

ленной задачей и

условиями её ре-

ализации;

-планировать

пути достижения

целей, осознанно

выбирать наибо-

лее

эффектив-

ные способы ре-

шения

учебных

и

познаватель-

ных задач;

-составлять план

и последователь-

ность действий;

-осуществлять

контроль по об-

разцу и вносить

необходимые

коррективы;

-адекватно

оце-

Демонстра

ция

слайдов

Формирование

УУД:

личностных,

коммуникабельн

ых анализ,

синтез.

4 мин

поддержку

товарищей и …

К – коллектив.

Я уверена, что

сегодня на уроке нас

ждет и успех, и

радость. И вы,

работая в

коллективе, проявите

свою одарённость.

Будьте внимательны

в течение урока.

Думайте,

спрашивайте и

предлагайте – так

как дорогой к истине

мы будем идти

вместе.

нивать правиль-

ность или оши-

бочность выпол-

нения

учебной

задачи, её объек-

тивную

труд-

ность

и

соб-

ственные

воз-

можности её ре-

шения;

учащиеся

получат

возможность

научиться:

-предвидеть воз-

можности полу-

чения

конкрет-

ного результата

при решении за-

дач;

концентрировать

волю

для

преодоления ин-

теллектуальных

затруднений

и

физических пре-

пятствий.

познаватель

ные УУД:

учащиеся

научатся:

-самостоятельно

выделять и фор-

мулировать

по-

знавательные

цели;

-использовать

2

Актуализац

ия прежних

знаний

Цели учителя:

Повторить

имеющиеся у

учащихся знания

по данной теме.

Выяснить

возможные

затруднения

учащихся и помочь

им ликвидировать

обнаруженные

недочеты.

Создать условия

Предлагаю начать

нашу работу с

выполнения этого

задания. Перед

выполнением

задания оцените

себя. На столе лежит

карточка со шкалой

оценивания. Для

проверки

используйте

сигнальные

карточки.

Среди заданных

чисел:

Работают с

карточками

Ответ

Фронтальн

ый опрос:

устный

опрос по

материалу,

для

подготовки

к

дальнейше

й работе.

Совместна

я

деятельнос

ти: разбор

заданий, с

Взаимопроверка

и взаимопомощь

учащихся

Активные

действия

учащихся с

материалами

урока,

проявление

коммуникабельн

ости.

4 мин

для

самостоятельной

постановке

учащимися цели

урока.

Цели учащихся:

убедиться в

значимости

изучаемого

материала и

оценить степень

своей готовности к

работе на уроке.

сформулировать

цель урока.

5 ; 0 ; ; 120 ;

4,2(51) ; – 21 ; 3\7 ;

– 2,5 ; ;

0,818118111... .

укажите:

а) натуральные, б)

целые, в)

рациональные г)

иррациональные.

Какие числа

называются

рациональными,

иррациональными?

учащихся:

а) 5, 120

б) 5, 0, 120, -21

в) 3/7; 4,2(51);

– 2,5

г)

,

,

0,818118111...

Рациональные

числа – это

числа,

представляемы

е в виде дроби

m\n.

Бесконечно

десятичные

периодические

дроби.

Иррациональн

ые числа – это

числа,

представляемы

е в виде

бесконечных

непериодическ

их десятичных

дробей;

обозначаются

общие

приемы

решения задач;

-применять пра-

вила и пользо-

ваться инструк-

циями,

освоен-

ными

законо-

мерностями;

-самостоятельно

ставить

цели,

выбирать и со-

здавать алгорит-

мы для решения

учебных матема-

тических

проблем;

-умения

пони-

мать и использо-

вать математиче-

ские

средства

наглядности (ри-

сунки, чертежи,

схемы и др.) для

иллюстрации,

интерпретации,

аргументации;

учащиеся

получат

возможность

научиться:

-устанавливать

причинно-след-

ственные связи;

строить логиче-

ские

рассужде-

ния,

умозаклю-

чения

(индук-

целью

выявления

типичных

ошибок,

обсуждени

е

правильны

х

вариантов

коррекция

подготовки

учащихся

по

отдельным

вопросам

уже

пройденны

х тем.

Ребята, а вы знаете,

что существует

праздник который

отмечается строго

девять раз в

столетие.

Обратите внимание

на хронология этих

дат.

Какова их

особенность?

1 января хх01 года

2 февраля хх04 года

3 марта хх09 года

4 апреля хх16 года

5 мая хх25 года

6 июня хх36 года

7 июля хх49 года

8 августа хх64 года

9 сентября хх81 года

В день когда число,

порядковый номер

месяца являются

квадратными

корнями из двух

последних цифр

года, отмечается

неофициальный

праздник

День квадратного

корня. Впервые этот

праздник отмечался

9 сентября 1981 года

(09-09-81).

Основателем

праздника является

радикалом.

Да, через 2 года

4 месяца, в11

классе.

тивные,

дедук-

тивные) и выво-

ды;

-видеть матема-

тическую задачу

в других дисци-

плинах, в окру-

жающей жизни;

-выдвигать гипо-

тезы при реше-

нии учебных за-

дач и понимания

необходимости

их проверки;

-планировать

и

осуществлять

деятельность,

направленную

на решение за-

дач

исследова-

тельского харак-

тера;

-осознанно

вы-

бирать наиболее

эффективные

способы

реше-

ния учебных и

познавательных

задач;

-оценивать

ин-

формацию (кри-

тическая оценка,

оценка достовер-

ности);

-устанавливать

причинно-след-

ственные связи,

школьный учитель

Рон Гордон из США.

– Определите будете

ли вы школьниками,

когда состоится

праздник.

– Ребята, вы изучали

квадратные корни?

– Кто уже догадался,

какова цель нашего

урока?

Повторение и

закрепление

ранее

изученного

материала:

квадратные

корни.

выстраивать рас-

суждения, обоб-

щения.

Коммуникатив

ные УУД

учащиеся

получат

возможность

научиться:

-организовывать

учебное сотруд-

ничество и сов-

местную дея-

тельность с учи-

телем и сверст-

никами: опреде-

лять цели, рас-

пределять функ-

ции и роли

участников;

-взаимодейство-

вать и находить

общие способы

работы; умения

работать в груп-

пе: находить об-

щее решение и

разрешать кон-

фликты на осно-

ве согласования

позиций и учёта

интересов, слу-

шать партнёра,

формулировать,

аргументировать

и отстаивать

своё мнение;

3

Усвоение

новых

знаний и

способов

действий,

их

закреплени

е

Цели учителя: создать

условия для

систематизации

знания по теме

“Квадратные корни”;

Цели учащихся: уметь

анализировать ранее

изученный материал,

выделять главное.

Предлагаю

составить карту

знаний и умений,

которая поможет нам

в системе повторить

ранее изученный

материал. Работаем

по группам.

Таблица №1

– Какая задача

первоначальная

перед нами стоит?

Укажите номер

рисунка,

соответствующий

графику функции у

= х

2

.

Работа с

таблицей № 1

Повторить в

Беседа,

индивидуа

льная ,

парная,

групповая

работа,

работа с

таблицами,

с

учебником,

с

карточками

Формирование

коммуникабельн

ых и

регулятивных

УУД

20 мин

3)

4)

Мне нужны два

системе

изученный

материал, и в

этом нам

поможет карта

знаний и

умений.

Выбирается

-разрешать кон-

фликты на осно-

ве учета интере-

сов и позиций

всех участников;

-координировать

и принимать раз-

личные позиции

во взаимодей-

ствии;

-аргументиро-

вать свою пози-

цию и координи-

ровать её с пози-

циями партнеров

в сотрудниче-

стве при выборе

общего решения

в совместной де-

ятельности.

помощника, в роли

научных работников,

которые составят

определение

квадратного корня и

арифметического

квадратного корня.

Остальным

предлагаю

выполнить эти

задания. Оцените

себя перед

выполнением

задания и после.

Совпала ли ваша

оценка. Поменяйтесь

работами для

взаимоконтроля.

1. Найдите корни

уравнения (если это

возможно).

а) х

2

= 25 ;

в) х

2

= - 4/ 81

б) х

2

= 25/36 ; г)

х

2

= -1,44

2. Выберите верные

равенства.

а) √ 64 = 8 ;

б) √- 0,09 = 0,3;

два

помощника, в

роли научных

работников,

которые

составят

определение

квадратного

корня и

арифметическо

го квадратного

корня.

Работают с

карточками,

выполняют

самопроверку и

взаимопроверк

а.

Ответы

учащихся

А) х

1

=5, х

2

= -5;

б) х

1

=5/6, х

2

= -

5/6;

в) уравнение не

имеет корней

г) уравнение не

имеет корней.

в) √(- 25)

2

= 25 ;

г) - √49 = -7;

3. При каких

значениях х имеет

смысл выражение

√- 2х ?

а) х > 0; б) х < 0 ;

в) х < 0 ; г) х > 0

У кого возникло

затруднение!

– Ребята, проверьте

верно ли составлено

определение.(Работа

в парах, 2 человека у

доски)

Из приведенных

фраз в списке

составьте

определение

квадратного корня и

арифметического

квадратного корня.

а) из числа а;

б) Арифметический

квадратный корень;

в) это;

г) неотрицательно

2. а) верное;

б) неверное;

в) верное;

г) верное.

3. При в) х <

0;

Составляют

определение

квадратного

корня и

арифметическо

го квадратного

корня.

число;

д) квадрат которого;

е) равен а;

ж) корень

з) квадратного

уравнения

и) вида х

2

к) √а = в, в

2

=а , а > 0

4

Закреплени

е учебного

материала

Цель учителя:

организовать

деятельность

учащихся по

применению

знаний в

разнообразных

ситуациях.

Цель учащихся:

уметь извлекать

корень из числа,

произведения и

частного.

« Знание – только

тогда знание, когда

оно приобретено

усилиями своей

мысли, а не

памятью». Л.Н.

Толстой.

– Какие знания нам

понадобятся для

выполнения этого

задания?

– Для каждого из

задания сопоставьте

соответствующее

свойство.

Упростите

выражение:

1) 3

2

4

2

;

2) 9 у

6

;

Необходимо

знать свойства

арифметическо

го квадратного

корня.

Работа в

тетрадях.

Индивидуа

льная

работа по

карточкам

8 мин

3) (х – 3)

2

2

;

4) (8)

2

*

√20 / 5

5

Итог урока.

Наш урок подходит

к концу. Давайте

вспомним какова

цель нашего урока?

– Чему научились?

– Записываем

домашнее задание.

Вот несколько

вариантов

домашнего задания,

вы можете выбрать

сами (задания по 3

уровням сложности,

см. приложение).

Спасибо за урок!

Повторить и

закрепить

материал по

теме

«Квадратные

корни».

Выяснить

возможные

затруднения и

ликвидировать

обнаруженные

недочеты.

Анализировать,

систематизиров

ать изученный

материал.

беседа

Коммуникативн

ые УУД

4 мин

Таблица №1

Учащийся должен знать

Учащийся должен уметь

Учащийся должен

понимать

1

Функция у = х

2

и ее

график. Свойства функции

у = х

2

.

Находить функцию у =

х

2

. Строить график функции.

Каким образом

коэффициент влияет на

график и свойства

функции.

2

Определение квадратного

корня и арифметического

квадратного корня.

Находить квадратный корень

уравнения вида х

2

=а,

извлекать арифметический

квадратный корень.

Различие между

квадратным корнем и

арифметическим

квадратный корнем.

3

Свойства арифметического

квадратного корня.

Внесение и вынесения

множителя из-под корня.

Извлекать корень из квадрата

числа, произведения и

частного. Вносить и

выносить множитель из-под

корня.

Применение свойств

на тот случай, когда

подкоренное

выражение

представляет собой

неотрицательный

множитель или когда

нет возможности

извлекать корень из

числа.

4

Действия с

арифметическим

квадратным корнем.

Преобразовывать буквенные

и числовые выражения

содержащих корни.

Необходимость

применения действий

арифметического

квадратного корня



В раздел образования